Takže znovu a lépe
V diskusi pod článkem jsem uváděl ze se nemohu s funkcí MOD() modulo dobrat spravneho vysledku u diffie-hellman vzorce na vymenu klice, uvedl jsem ale omylem špatný příklad který nahodou calc vypočítal správně. Proto bych to rád napravil i s ukázkami a .ods souborem ke stažení
Jedná se LO Calc 5.0.3.2
tak například:
calc říka ze MOD(22^25;116) = 28, wolframalpha dá správný výsledek 64 http://www.wolframalpha.com/input/?i=22^25+modulo+116
calc říka ze MOD(22^30;116) = 16, wolframalpha dá správný výsledek 20 http://www.wolframalpha.com/input/?i=22^30+modulo+116
Podle informací od čtenáře "neutr" jsem na rozpacích jestli bych neměl sešit donutit přejít do nějakeho jiného režimu, ale nevím jak. Pro úplnost ještě nahraju i celý sešit, snad to nějak pomůže. Je sice zajímavé že jsou i případy kdy se společný D-H klíč vzácně shoduje jako např. když se použijí g=22, p=116, a=3, b=6. No a to je na tom to zajimave že mi není známo kde se ztrácí calc, nebo kde jsem to já kdo porušil nejaky maximálni rozsah nebo pravidlo calcu.
neutr napsal(a)...
2. Číslo =82^7 (= 24928547056768) ještě spadá do rozsahu Long Integer. To znamená že je menší nežli =2^1024 (Od tohoto rozsahu -včetně- už počítač není schopen počítat. Vyhodí #NUM).
3. Výpočty probíhají pomocí lg - přirozeného logaritmu se základem "e" 2,71... což znamená, že zde vzniká nepřesnost v podílu. V sešitě je funkce LN() což je přirozený logaritmus. Jeho opakem je funkce EXP(). tato funkce pracuje s formátem čísla Double.
...